
PHIAPS

SENDERÖHRE $TA^{12}/_{20000}$

Die TA 12/20000 ist eine wassergekühlte Senderöhre, deren Anode einen Teil der Aussenwand bildet. Eine Chromeisenlegierung gewährleistet eine dauerhafte und zuverlässige Verbindung mit dem Glasteil der Röhre.

Die Anode ist in einem Wasserbehälter aufgestellt, der eine wirksame Kühlung mit fliessendem Wasser gestattet. Die an der Anode entwickelte Wärme kann auf diese Weise rasch abgeleitet werden, so dass der Anodenverlust bis zu 12 kW betragen darf. Entworfen wurde die Röhre für den Betrieb auf Wellenlängen von mehr als 150 m. Bei Telegraphie ist eine Eingangsleistung bis zu 30 kW zulässig bei einer maximalen Anodenspannung von 15000 V. Bei Telephonie mit Anodenspannungsmodulation kann,

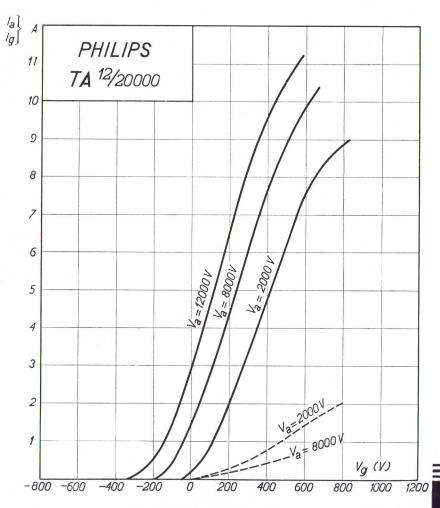
entsprechend der Modulationstiefe, 25 bis 15 kW zugeführt werden. Die Anodenspannung darf in diesem Falle 12000 V nicht überschreiten.

Als Klasse-B-Verstärker für Wellenlängen $\lambda > 150$ m kann die Röhre wie folgt eingestellt werden:

ANODENSPANNUNG 15000 V

Modulations-	Anoden-	Energie der	Spitzenleistung		
tiefe	strom	Trägerwelle			
100%	1,2 A	5,4 kW	21,6 kW		
80%	1,2 A	6 kW	19,4 kW		
60%	1,3 A	7,3 kW	18,3 kW		

ANODENSPANNUNG 12000 V


Modulations-	Anoden-	Energie der	Spitzenleistung		
tiefe	strom	Trägerwelle			
100%	1,25 A	4,9 kW	19,6 kW		
80%	1,35 A	5,4 kW	17,5 kW		
60%	1,45 A	6,6 kW	16,9 kW		

Die wassergekühlte Philips Gleichrichterröhre DA 12/24000 eignet sich hervorragend zur Lieferung der Anodenspannung für diese Senderöhre.

SENDERÖHRE TA 12/20000

Heizspannung	V_f	=	21,5	5 V		
Heizstrom	I_f	=	ca.	79	A	
Sättigungsstrom	I_s	=	ca.	11 A		
Anodenspannung	V_a	=	600	0-15	000 \	Į
Zulässiger Anodenverlust	W_a	=	12	kW		
Geprüfter Anodenverlust	W_{at}	=	15	kW		
Verstärkungsfaktor	g	=	ca.	40		
Durchgriff	D	=	ca.	2,5 9	%	
Steilheit bei $V_a = 12000 \text{ V},$ $I_a = 1 \text{ A} \dots$	$S_{\rm norm}$	=	ca.	10 n	nA/V	
Grösste Steilheit	$S_{ m max}$	=	ca.	18 1	mA/V	r
Innerer Widerstand bei $V_a = 12000 \text{ V}$, $I_a = 1 \text{ A} \dots$	R_i	_	ca.	4000	οΩ	
Grösster Kolbendurchmesser	d	=	100	mn	a	
Grösster Gesamtdurchmesser	d'	=	ca.	225	mm	
Gesamtlänge ohne Kühlmantel	l	=	ca.	785	mm	
Gesamtlänge mit Kühlmantel	l'	=	ća.	800	mm	